Missing Energy (E_T) at the LHC: The Dark matter Connection

Tao Han

University of Wisconsin – Madison

Joint-seminar at UMD/Hopkins (Sept. 30, 2009)

(Collaborators: Ian-Woo Kim, J.H. Song)
Outline

Missing Energy Events
Outline

Missing Energy Events

Missing Energy and New Physics at the LHC
Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass
Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass

“Antler Decay” Kinematics
Outline

Missing Energy Events

Missing Energy and New Physics at the LHC

Determining the Dark Matter Mass

“Antler Decay” Kinematics

Summary
Missing Energy Events

Pauli’s “Neutron”, Fermi’s “Neutrino”
Pauli’s “Neutron”, Fermi’s “Neutrino”

In β decay, the electron energy spectrum is continuous:

$$^3H \rightarrow ^3He^+ + e^- + \nu_e$$ (hep-ex/0109033).

*KATRIN experiment: $^3H \rightarrow ^3He^+ + e^- + \nu_e$ (hep-ex/0109033).
Pauli’s “Neutron”, Fermi’s “Neutrino”

In β decay, the electron energy spectrum is continuous:

For a 2-body decay, $M \to ab$, the kinetic energy of a:

$$K_a = \frac{(M - m_a)^2 - m_b^2}{2M}.$$

*KATRIN experiment: $^3H \to ^3He^+ + e^- + \nu_e$ (hep-ex/0109033).
In β decay, the electron energy spectrum is continuous:

Pauli’s “Neutron”, Fermi’s “Neutrino”

For a 2-body decay, $M \rightarrow ab$, the kinetic energy of a:

$$K_a = \frac{(M - m_\alpha)^2 - m_b^2}{2M}.$$

For a 3-body decay, $M \rightarrow abc$, the kinetic energy of a:

$$0 \leq K_a \leq \frac{(M - m_\alpha)^2 - (m_b + m_c)^2}{2M}.$$

KATRIN experiment: $^3H \rightarrow ^3He^+ + e^- + \nu_e$ (hep-ex/0109033).
Pauli in 1930: Although only p^+, e^- detected, there is an undetected particle “neutron”.
Pauli in 1930: Although only p^+, e^- detected, there is an undetected particle “neutron”.

(Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron+p^+ reaction.)
• Pauli in 1930: Although only p^+, e^- detected, there is an undetected particle “neutron”.
 (Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron+p^+ reaction.)

• Fermi in 1934 renamed it “neutrino”, and formulated the weak interaction for $n \rightarrow p^+ + e^- + \bar{\nu}_e$:

$$\mathcal{L} = G_F \, \bar{\psi}_p \psi_n \, \bar{\psi}_e \psi_{\nu_e}.$$
Pauli in 1930: Although only p^+, e^- detected, there is an undetected particle “neutron”. (Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron+p^+ reaction.)

Fermi in 1934 renamed it “neutrino”, and formulated the weak interaction for $n \rightarrow p^+ + e^- + \bar{\nu}_e$:

$$\mathcal{L} = G_F \bar{\psi}_p \psi_n \bar{\psi}_e \psi_{\nu_e}.$$

\Rightarrow The neutrino was the 1st example for “missing energy”.
• Pauli in 1930: Although only \(p^+ \), \(e^- \) detected, there is an **undetected** particle “neutron”.

 (Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron\(+ p^+ \) reaction.)

• Fermi in 1934 renamed it “neutrino”, and formulated the weak interaction for \(n \to p^+ + e^- + \bar{\nu}_e \):

\[
\mathcal{L} = G_F \bar{\psi}_p \psi_n \bar{\psi}_e \psi_{\nu_e}.
\]

⇒ The neutrino was the 1\(^{st}\) example for “missing energy”.

⇒ The non-detectable nature introduced the 1\(^{st}\) “dark matter”.

†Though not certain to be the cosmic relic dark matter.

†Chadwick’s neutron is NOT dark.
Pauli in 1930: Although only p^+, e^- detected, there is an undetected particle “neutron”.

(Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron+p^+ reaction.)

Fermi in 1934 renamed it “neutrino”, and formulated the weak interaction for $n \rightarrow p^+ + e^- + \bar{\nu}_e$:

$$\mathcal{L} = G_F \bar{\psi}_p \psi_n \bar{\psi}_e \psi_{\nu_e}.$$

⇒ The neutrino was the 1st example for “missing energy”.

⇒ The non-detectable nature introduced the 1st “dark matter”.

† Though not certain to be the cosmic relic dark matter.

† Chadwick’s neutron is NOT dark.

Neutrinos were caught!

† Cowan-Reines in 1956: $\bar{\nu}_e + p \rightarrow e^+ + n$.
† Lederman-Schwartz-Steinberger in 1962 (BNL): $\nu_\mu + Al \rightarrow \mu + X$.
† “DODUT collaboration” in 2000 (FNAL): $c \rightarrow \nu_\tau + \text{target} \rightarrow \tau + X$.

†
Pauli in 1930: Although only p^+, e^- detected, there is an **undetected** particle “neutron”.
(Chadwick in 1932 discovered the neutron, then Irene and Frederic Joliot-Curie observed neutron+p^+ reaction.)

Fermi in 1934 renamed it “neutrino”, and formulated the weak interaction for $n \rightarrow p^+ + e^- + \bar{\nu}_e$:

$$\mathcal{L} = G_F \bar{\psi}_p \psi_n \bar{\psi}_e \psi_{\nu_e}.$$

⇒ The neutrino was the 1st example for “missing energy”.

⇒ The non-detectable nature introduced the 1st “dark matter”.
† Though not certain to be the cosmic relic dark matter.
† Chadwick’s neutron is NOT dark.

Neutrinos were caught!
† Cowan-Reines in 1956: $\bar{\nu}_e + p \rightarrow e^+ + n$.
† Lederman-Schwartz-Steinberger in 1962 (BNL): $\nu_\mu + Al \rightarrow \mu + X$.
† “DODUT collaboration” in 2000 (FNAL): $c \rightarrow \nu_\tau + \text{target} \rightarrow \tau + X$.

“Dark matter direct detection”.
\(W^\pm \) and Missing Energy

- The discovery of \(W^\pm \rightarrow \ell \nu_\ell \) (UA1/UA2 in 1983):

Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at \(\sqrt{s} = 540 \text{ GeV} \)

UA1 Collaboration, CERN, Geneva, Switzerland

![Graph showing missing transverse energy and number of events](image)
At the Tevatron Run II:

Missing E$_T$ - W Candidate

![Graph showing Missing E$_T$ - W Candidate](image)

- Data
- PMCS+QCD
- QCD bkg

D0 Run II Preliminary
At the Tevatron Run II:

The transverse momentum of ν or e has a Jacobian peak:

$$p_T = E \sin \theta,$$

$$\frac{d\hat{\sigma}}{dm_{\nu e}^2 dp_{eT}^2} \propto \frac{\Gamma_W M_W}{(m_{\nu e}^2 - M_W^2)^2 + \Gamma_W^2 M_W^2} \frac{1}{m_{\nu e}^2 \sqrt{1 - 4p_{eT}^2/m_{\nu e}^2}}.$$
Transverse mass variable $W \rightarrow e\nu$:

$$m_{e\nu}^T = (E_{eT} + E_{\nu T})^2 - (p_{eT} + p_{\nu T})^2 = 2E_{eT}E_{T}^{\text{miss}}(1 - \cos \phi) \leq m_{e\nu}^2.$$
Transverse mass variable $W \rightarrow e\nu$:

$$m_{e\nu}^2 = (E_{eT} + E_{\nu T})^2 - (\vec{p}_{eT} + \vec{p}_{\nu T})^2 = 2E_{eT}E_{T}^{miss}(1 - \cos \phi) \leq m_{e\nu}^2.$$

⇒ If $p_T(W) = 0$, then: $m_{e\nu} T = 2E_{eT} = 2E_{T}^{miss}$.

Transverse Mass - W Candidate

Missing E$_T$ - W Candidate
Transverse mass variable $W \rightarrow e\nu$:

\[
m_{e\nu}^2_T = (E_{eT} + E_{\nu T})^2 - (p_{eT} + p_{\nu T})^2 = 2E_{eT}E_{T}^{\text{miss}}(1 - \cos \phi) \leq m_{e\nu}^2.
\]

⇒ If $p_T(W) = 0$, then: $m_{e\nu}^2_T = 2E_{eT} = 2E_{T}^{\text{miss}}$.

⇒ If $p_T(W) \neq 0$ (some transverse motion δP_V), then:

\[
p'_{eT} \sim p_{eT} \left[1 + \delta P_V/M_V\right],
\]

\[
m_{e\nu}^2_T \sim m_{e\nu}^2_T \left[1 - (\delta P_V/M_V)^2\right],
\]

\[
m_{e\nu}^2 = m_{e\nu}^2.
\]
Large(r) missing energy events at the Tevatron:

SM prediction:
Large(r) missing energy events at the Tevatron:

SM prediction:

First SUSY bound: CDF with 25.3 nb^{-1} (!) (1989)
No events found with $E_T > 40 \text{ GeV} \Rightarrow \sigma_{\text{MSSM}} < 0.1 \text{ nb}$
$\Rightarrow m_{\tilde{g}}, m_{\tilde{q}} > 80 \text{ GeV}.$
Large(r) missing energy events at the Tevatron:

SM prediction:

![Graph showing Missing E_T for Low Kinematic Region]

First SUSY bound: CDF with 25.3 nb^{-1} (!) (1989)

No events found with $E_T > 40 \text{ GeV} \Rightarrow \sigma_{MSSM} < 0.1 \text{ nb}$

$\Rightarrow m_{\tilde{g}}, m_{\tilde{q}} > 80 \text{ GeV}.$

Current SUSY bound: CDF with 2 fb^{-1}

$\Rightarrow \sigma_{MSSM} < 0.1 \text{ pb}$

$\Rightarrow m_{\tilde{g}} > 320 \text{ GeV}, m_{\tilde{q}} > 390 \text{ GeV}.$
Missing energy events in e^+e^- collisions

At LEP I (L3):
Neutrino counting:
$$e^+e^- \rightarrow \gamma + \nu_i\bar{\nu}_i$$
$N_\nu \approx 3$.

![Graph showing neutrino events](image-url)
New Physics Expectation in E_T:

\dagger M. Mangano, arXiv:0809.1567 [hep-ph].
Missing Energy and New Physics at LHC

New Physics Expectation in E_T:

- Setting a bound for mass scale may not be too hard.
- Establishing E_T signal would be challenging,
 \Rightarrow that would be a revolutionary discovery for BSM physics!

\[M. \text{ Mangano, arXiv:0809.1567 [hep-ph].} \]
It has been shown quite promising (mSUGRA at ATLAS†)

Dark matter connection: LHC vs. Cosmology

Steps to follow:

- Discover missing-energy events at a collider and estimate the mass of the WIMP.
- Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.

Dark matter connection: LHC vs. Cosmology

Steps to follow:

• Discover missing-energy events at a collider and estimate the mass of the WIMP.
• Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.

Cosmic relic density:

$$\Omega_\chi h^2 \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_\chi^2}{\alpha^2}.$$

By crossing, $\chi\chi$ annihilation is related to scattering.

Dark matter connection: LHC vs. Cosmology

Steps to follow:

- Discover missing-energy events at a collider and estimate the mass of the WIMP.
- Observe dark matter particles in direct detection experiments and determine whether their mass is the same as that observed in collider experiments.

Cosmic relic density:

\[\Omega_\chi h^2 \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_\chi^2}{\alpha^2}. \]

By crossing, \(\chi \chi \) annihilation is related to scattering.

After that,

- Determine the qualitative physics model that leads to missing-energy events.
- Determine the parameters of this model that predict the relic density.
- Determine the parameters of this model that predict the direct and indirect detection cross sections.
- Measure products of cross sections and densities from astrophysical observations to reconstruct the density distribution of dark matter.

\[\text{§Baltz, Battaglia, Peskin and Wizansky, hep-ph/0602187.}\]
Optimistic conclusions were obtained for mSUGRA and for MSSM parameter-determinations:

mSUGRA: $\tan \beta = 10$, $A_0 = 0$, $\mu > 0$, $m_t = 171.4$ GeV

Optimistic conclusions were obtained for mSUGRA and for MSSM parameter-determinations:

\[\text{mSUGRA : } \tan \beta = 10, \ A_0 = 0, \ \mu > 0, \ m_t = 171.4 \text{ GeV} \]

For most general cases, situations may be much more complex:

The “LHC inverse problem”: Data \(\Rightarrow \) many possible solutions!

Determining the Dark Matter Mass

- Model-independent approaches at colliders
Determining the Dark Matter Mass

– Model-independent approaches at colliders

The difficulties:

- Two missing particles in each event;
- Unknown parton frame leads to less constrained kinematics.
Edges, End-points etc.

- Simple decay chain:††

\[
\begin{align*}
\text{In general, } m_{\ell\ell}^{\text{max}} &= M_Z - M_X \quad \text{(gives mass difference).} \\
\text{If } Y \text{ is also on-shell, } m_{\ell\ell}^{\text{max}} &= \sqrt{(M_Z^2 - M_Y^2)(M_Y^2 - M_X^2)}/M_Y.
\end{align*}
\]

Longer decay chain‡‡

Similarly, \(m_{q\ell\ell}^{\text{max}} = \sqrt{(M_q^2 - M_{\tilde{\chi}_2}^2)(M_{\tilde{\chi}_2}^2 - M_{\tilde{\chi}_1}^2)} / M_{\tilde{\chi}_2}. \)

Longer decay chain

\[m_{q\ell\ell}^{\text{max}} = \sqrt{(M_{\tilde{q}}^2 - M_{\tilde{\chi}_2}^2)(M_{\tilde{\chi}_2}^2 - M_{\tilde{\chi}_1}^2)}/M_{\tilde{\chi}_2}. \]

† Only probe mass differences.
† May encounter combinatoric ambiguities.

Fully Constructable Kinematics

Kinematical on-shell conditions

Assume:

- **n signal events**: particles 3, 5, 7; 4, 6, 8 observed; 1, 2 missing.
- **Unknowns**: masses \(N, X, Y, Z \) (4); 4-momenta of 1, 2 (8n) \(\Rightarrow 4 + 8n \).

Assume:

- **n signal events**: particles 3,5,7; 4,6,8 observed; 1, 2 missing.
- **Unknowns**: masses N, X, Y, Z (4); 4-momenta of 1, 2 ($8n$) $\Rightarrow 4 + 8n$.
- **Constraints**: missing transverse momenta (x, y): $2n$.
 on-shell conditions (both chains) $8n$. Total $\Rightarrow 10n$.

Kinematical on-shell conditions

Assume:
- n signal events: particles 3, 5, 7; 4, 6, 8 observed; 1, 2 missing.
- Unknowns: masses N, X, Y, Z (4); 4-momenta of 1, 2 ($8n$) ⇒ $4 + 8n$.
- Constraints: missing transverse momenta (x, y): $2n$.
 on-shell conditions (both chains) $8n$. Total ⇒ $10n$.

Let constraints ≥ unknowns ⇒ $n ≥ 2$.

Assume:

- **n signal events**: particles 3, 5, 7; 4, 6, 8 observed; 1, 2 missing.
- **Unknowns**: masses N, X, Y, Z (4); 4-momenta of 1, 2 ($8n$) ⇒ $4 + 8n$.
- **Constraints**: missing transverse momenta (x, y): $2n$.
 on-shell conditions (both chains) $8n$. Total ⇒ $10n$.

Let constraints \geq unknowns ⇒ $n \geq 2$.

† With many events (n), it’s an over-constrained system.
† If only 3 on-shell particles in each chain,
 there will be fewer constraints than unknowns.

Simulated results.

Simulated results.

Simulated results.

Remarks:
- Very selective channels.
- Very restrictive kinematics.
- Realistic experimental conditions will further dilute the solutions.

Transverse Mass Variables M_{T2}

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, M_{T2} was introduced.

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, M_{T2} was introduced.*

Recall the invariant mass/transverse mass of ab (or $e\nu$):

$$m_{ab}^2 = m_a^2 + m_b^2 + 2(E_T^a E_T^b \cosh \Delta \eta - \vec{p}_T^a \cdot \vec{p}_T^b) \geq m_T^2.$$

Transverse Mass Variables M_{T2}

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, M_{T2} was introduced.*

Recall the invariant mass/transverse mass of ab (or $e
$)

\[
m_{ab}^2 = m_a^2 + m_b^2 + 2(E_T^a E_T^b \cosh \Delta \eta - \vec{p}_T^a \cdot \vec{p}_T^b) \geq m_T^2.
\]

Consider a pair production/decay $D_1 \rightarrow a_1 \ b_1$, $D_2 \rightarrow a_2 \ b_2$:

\[
m_D^2 \geq \max(m_{TD1}^2, \ m_{TD2}^2).
\]

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, M_{T2} was introduced.*

Recall the invariant mass/transverse mass of ab (or $e\nu$):

$$m_{ab}^2 = m_a^2 + m_b^2 + 2(E_T^a E_T^b \cosh \Delta \eta - \vec{p}_T^a \cdot \vec{p}_T^b) \geq m_T^2.$$

Consider a pair production/decay $D_1 \rightarrow a_1 b_1, D_2 \rightarrow a_2 b_2$:

$$m_D^2 \geq \max(m_{TD_1}^2, m_{TD_2}^2).$$

Only knowing $|\vec{p}_{Tb_1} + \vec{p}_{Tb_2}| = E_T$, one defines:

$$M_{T2}^2(m_{a1}, m_{a2}; m_b) = \min_{|\vec{p}_{Tb_1} + \vec{p}_{Tb_2}| = E_T} [\max(m_{T1}^2, m_{T2}^2)].$$

In the attempt to determine the absolute masses (parent and missing one), without fully reconstructing the events, M_{T2} was introduced.*

Recall the invariant mass/transverse mass of ab (or $e\nu$):

$$m_{ab}^2 = m_a^2 + m_b^2 + 2(E_T^a E_T^b \cosh \Delta \eta - \vec{p}_T^a \cdot \vec{p}_T^b) \geq m_T^2.$$

Consider a pair production/decay $D_1 \rightarrow a_1 b_1$, $D_2 \rightarrow a_2 b_2$:

$$m_D^2 \geq \max(m_{TD1}^2, m_{TD2}^2).$$

Only knowing $|\vec{p}_{Tb1} + \vec{p}_{Tb2}| = E_T$, one defines:

$$M_{T2}^2(m_{a1}, m_{a2}; m_b) = \min_{|\vec{p}_{Tb1} + \vec{p}_{Tb2}| = E_T} \max(m_{TD1}^2, m_{TD2}^2).$$

This is a “functional”:†

* For each event (E_T), run through trial \vec{p}_{Tb1} and $\vec{p}_{Tb2} = \vec{E}_T - \vec{p}_{Tb1}$:
 → It is smaller than the true $\max(m_{TD1}^2, m_{TD2}^2)$;
 → With many events, it still doesn’t go over it.

Thus, one defines:

\[
M_{T2}^{\text{max}}(m_b) = \max_{\text{all events}} M_{T2}(m_{a1}, m_{a2}; m_b).
\]

a function of the trial missing mass \(m_b \).

Thus, one defines:

\[M_{T2}^{max}(m_b) = \max_{all\; events} M_{T2}(m_{a1}, m_{a2} ; m_b). \]

a function of the trial missing mass \(m_b \).

The kink structure:

When varying the trial missing mass below to above the true value of \(m_b \), the curve \(M_{T2}^{max}(m_b) \) (for multi-body decay) changes the slope:

\[\text{Gluino transverse mass (max)} \]

\[M_x \] (GeV)

\[700 \quad 750 \quad 800 \quad 850 \quad 900 \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \]

\[\text{Heavy squark} \]

Thus, one defines:

\[M_{T2}^{\text{max}}(m_b) = \max_{\text{all events}} M_{T2}(m_{a1}, m_{a2}; m_b). \]

a function of the trial missing mass \(m_b \).

The kink structure:

When varying the trial missing mass below to above the true value of \(m_b \), the curve \(M_{T2}^{\text{max}}(m_b) \) (for multi-body decay) changes the slope:

\[M_{x} \text{ (GeV)} \]

\[\text{Gluino transverse mass (max)} \]

- For simple 2-body decay, no clear kink;
- For multi-body decays, combinatorics dilute the kink.

The “Antler decay”

D, a SM-like particles; B, X carry a new quantum number.

“Antler Decay” Kinematics

The “Antler decay”

D, a SM-like particles; B, X carry a new quantum number.

Advantages:

- More constrained kinematics: M_D is known from other SM modes.

“Antler Decay” Kinematics

The “Antler decay”

\(D, a\) SM-like particles; \(B, X\) carry a new quantum number.

Advantages:

- More constrained kinematics: \(M_D\) is known from other SM modes.
- Many channels:

 - **MSSM:** \(H \to \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \to Z\tilde{\chi}_1^0 + Z\tilde{\chi}_1^0;\)

 - **Z’ SUSY:** \(Z’ \to \tilde{\ell}^+ + \ell^- \to \ell^- \tilde{\chi}_1^0 + \ell^+ \tilde{\chi}_1^0;\)

 - **UED:** \(Z^{(2)} \to L^{(1)} + L^{(1)} \to \ell^+ \gamma^{(1)} + \ell^- \gamma^{(1)};\)

 - **LHT:** \(H \to t^- + \bar{t}^- \to tA_H + \bar{t}A_H.\)

 - **ILC:** \(e^+e^- \to B_1 + \bar{B}_2 \to a_1X_1 + a_2X_2.\)

A new kinematical feature: cuspy structures!

\[m \propto d \Gamma \frac{1}{d m} \text{[GeV]} \]

\[p_T \propto d \Gamma \frac{1}{d p_T} \text{[GeV]} \]
A new kinematical feature: cuspy structures!

Pronounced “peaks” appear, suitable for observation!
Origin of the cusps:
Origin of the cusps:

Limiting cases (at the corners)

\[a_2 X_2 \leftarrow B_2 \leftarrow D \Rightarrow B_1 \rightarrow a_1 X_1 \]

- Back-to-back: \((\cos \theta_1, \cos \theta_2) = (+1, -1) \quad \Leftarrow + \Rightarrow \)
 Maximum \(M_{aa} \) configuration.

- Head-on: \((\cos \theta_1, \cos \theta_2) = (-1, +1) \quad \Rightarrow + \Leftarrow \)
 Medium \(M_{aa} \) configuration.

- Parallel: \((\cos \theta_1, \cos \theta_2) = (\pm 1, \pm 1) \quad \Rightarrow + \Rightarrow, \quad \Leftarrow + \Leftarrow \)
 Zero \(M_{aa} \) configurations.
Origin of the cusps:

Limiting cases (at the corners)

\[a_2 X_2 \leftarrow B_2 \leftarrow D \Rightarrow B_1 \rightarrow a_1 X_1 \]

- **Back-to-back:** \((\cos \theta_1, \cos \theta_2) = (+1, -1)\) \(\Leftarrow + \Rightarrow\)
 Maximum \(M_{aa}\) configuration.
- **Head-on:** \((\cos \theta_1, \cos \theta_2) = (-1, +1)\) \(\Rightarrow + \Leftarrow\)
 Medium \(M_{aa}\) configuration.
- **Parallel:** \((\cos \theta_1, \cos \theta_2) = (\pm 1, \pm 1)\) \(\Rightarrow + \Rightarrow, \quad \Leftarrow + \Leftarrow\)
 Zero \(M_{aa}\) configurations.
- Upon variable projection (losing info), singularities may be developed.
- It is purely kinematical, and new (rigorous singularity theorems in math).
The rapidities η and ζ in the parent-rest frame:
\[
cosh \eta = \frac{m_D}{2m_B} \equiv c_\eta, \quad \cosh \zeta = \frac{m_B^2 - m_X^2 + m_a^2}{2m_a m_B} \equiv c_\zeta,
\]
thus: η, ζ (plus m_D) $\implies m_B, m_a$.
The rapidities η and ζ in the parent-rest frame:

$$\cosh \eta = \frac{m_D}{2m_B} \equiv c_\eta,$$

$$\cosh \zeta = \frac{m_B^2 - m_X^2 + m_a^2}{2m_am_B} \equiv c_\zeta,$$

thus: η, ζ (plus m_D) $\Rightarrow m_B, m_a$.

- **Cusp and Edge: ($M_a = 0$ case)**

The end-point, instead of being $M_{aa}^{\text{max}} = m_D - 2m_X$, becomes

$$M_{aa}^{\text{max}} = m_B \left(1 - \frac{m_X^2}{m_B^2}\right) e^{\eta},$$

$$M_{aa}^{\text{cusp}} = m_B \left(1 - \frac{m_X^2}{m_B^2}\right) e^{-\eta}.$$
The rapidities η and ζ in the parent-rest frame:
\[
cosh \eta = \frac{m_D}{2m_B} \equiv c_\eta, \quad \cosh \zeta = \frac{m_B^2 - m_X^2 + m_a^2}{2m_am_B} \equiv c_\zeta,
\]
thus: η, ζ (plus m_D) $\implies m_B, m_a$.

- **Cusp and Edge: ($M_a = 0$ case)**

The end-point, instead of being $M_{aa}^{\text{max}} = m_D - 2m_X$, becomes
\[
M_{aa}^{\text{max}} = m_B \left(1 - \frac{m_X^2}{m_B^2}\right) e^\eta,
\]
\[
M_{aa}^{\text{cusp}} = m_B \left(1 - \frac{m_X^2}{m_B^2}\right) e^{-\eta}.
\]
Thus,
\[
\frac{M_{aa}^{\text{max}}}{M_{aa}^{\text{cusp}}} = e^{2\eta}, \quad (D \to B)
\]
\[
M_{aa}^{\text{max}} M_{aa}^{\text{cusp}} = m_B^2 \left(1 - \frac{m_X^2}{m_B^2}\right)^2. \quad (B \to X)
\]
Algebraically/graphically,

\[\frac{d\Gamma}{dM_{aa}} \propto \begin{cases}
2\eta M_{aa}, & \text{if } 0 \leq M_{aa} \leq M_{aa}^{\text{cusp}}; \\
M_{aa} \ln \frac{M_{aa}^{\text{max}}}{M_{aa}}, & \text{if } M_{aa}^{\text{cusp}} \leq M_{aa} \leq M_{aa}^{\text{max}}.
\end{cases} \]
Algebraically/graphically,
\[
\frac{d\Gamma}{dM_{aa}} \propto \begin{cases}
2\eta M_{aa}, & \text{if } 0 \leq M_{aa} \leq M_{aa}^{\text{cusp}}; \\
M_{aa} \ln \frac{M_{aa}^{\text{max}}}{M_{aa}}, & \text{if } M_{aa}^{\text{cusp}} \leq M_{aa} \leq M_{aa}^{\text{max}}.
\end{cases}
\]

<table>
<thead>
<tr>
<th>Mass</th>
<th>m_D (GeV)</th>
<th>m_B (GeV)</th>
<th>m_a (GeV)</th>
<th>m_X (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass I</td>
<td>1250</td>
<td>600</td>
<td>0</td>
<td>550</td>
</tr>
<tr>
<td>Mass II</td>
<td>1000</td>
<td>440</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Mass III</td>
<td>1000</td>
<td>350</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>Mass IV</td>
<td>600</td>
<td>250</td>
<td>m_Z</td>
<td>100</td>
</tr>
</tbody>
</table>

Mass I: “near threshold case” ($Z^{(2)}$ decay in the UED model).
Mass II: “boundary case” ($m_B \approx 0.44m_D$).
Mass III: “large mass gap case”.
Mass IV: “massive case” ($Z, t, ...$ in the final state).
Massive SM final state: \((M_a \neq 0)\)

For a massive case \(a = Z, t, \ldots, d\), \(d\Gamma/dM_{aa}\) may develop two cusps:
Cusp in Angular Distribution: \((M_a = 0) \)

\(\Theta \) is the angle of a visible particle \((a_1)\) in the \(a_1a_2\) c.m. frame with respect to the c.m. moving direction. Then

\[
\frac{d\Gamma}{d \cos \Theta} \propto \begin{cases}
\sin^{-3} \Theta, & \text{if } |\cos \Theta| \leq \tanh \eta, \\
0, & \text{otherwise}.
\end{cases}
\]
Cusp in Angular Distribution: \((M_a = 0)\)

\(\Theta\) is the angle of a visible particle \((a_1)\) in the \(a_1 a_2\) c.m. frame with respect to the c.m. moving direction. Then

\[
\frac{d\Gamma}{d\cos \Theta} \propto \begin{cases}
\sin^{-3} \Theta, & \text{if } |\cos \Theta| \leq \tanh \eta, \\
0, & \text{otherwise}.
\end{cases}
\]

\(\Rightarrow\) a sharp end-point (another cusp) at the boundary:

\[|\cos \Theta|_{\text{max}} = \tanh \eta = \sqrt{1 - \frac{4m_B^2}{m_D^2}}.\]
• **Cusp in Angular Distribution: \((M_a = 0)\)**

\(\Theta\) is the angle of a visible particle \((a_1)\) in the \(a_1a_2\) c.m. frame with respect to the c.m. moving direction. Then

\[
\frac{d\Gamma}{d\cos\Theta} \propto \begin{cases}
\sin^{-3}\Theta, & \text{if } |\cos\Theta| \leq \tanh\eta, \\
0, & \text{otherwise.}
\end{cases}
\]

⇒ a sharp end-point (another cusp) at the boundary:

\[|\cos\Theta|_{\text{max}} = \tanh\eta = \sqrt{1 - 4m_B^2/m_D^2}.\]

\[\text{Complementarity: Large-mass gap worse for } M_{aa}, \text{ better for } \cos\Theta.\]
“Robustness” of the proposal

(a). Back to the lab-frame: Lorentz boost
\[\Rightarrow M_{aa} \text{ not effected, } \cos \Theta \text{ peaks diluted:} \]

(b). Dynamical effects: matrix elements, spin-correlations etc.
\[\Rightarrow M_{aa}, \cos \Theta \text{ not appreciably effected,} \]
(c). Off-shell decays: finite width effects

\[m_B = 600 \, \text{GeV} \]

\[\Rightarrow \Gamma_B \approx 10\% \text{ not good anymore.} \]
On-going studies: †

- Reconstruct the antler kinematics:

\[D, a \text{ SM-like particles; } B \text{ (on-shell) and } X \text{ (missing)}. \]

†TH, I.-W. Kim and J. Song, in progress.
On-going studies:

- Reconstruct the antler kinematics:

![Diagram of antler kinematics]

\[D, \text{ a SM-like particles; } B \text{ (on-shell) and } X \text{ (missing)}. \]

MSSM: \(H \to \tilde{\chi}^0_2 + \tilde{\chi}^0_2 \to Z\tilde{\chi}^0_1 + Z\tilde{\chi}^0_1; \)

Z' SUSY: \(Z' \to \ell^+ + \ell^- \to \ell^-\tilde{\chi}^0_1 + \ell^+\tilde{\chi}^0_1; \)

UED: \(Z^{(2)} \to L^{(1)} + L^{(1)} \to \ell^+\gamma^{(1)} + \ell^-\gamma^{(1)}; \)

LHT: \(H \to t + \bar{t} \to tA_H + \bar{t}A_H. \)

ILC: \(e^+e^- \to B_1 + \bar{B}_2 \to a_1X_1 + a_2X_2. \)

\[^\dagger\] TH, I.-W. Kim and J. Song, in progress.
On-going studies:

- Reconstruct the antler kinematics:

 \[D, a \text{ SM-like particles; } B \text{ (on-shell) and } X \text{ (missing)} \].

 \[
 \begin{align*}
 \text{MSSM:} & \quad H \rightarrow \tilde{\chi}^0_2 + \tilde{\chi}^0_2 \rightarrow Z\tilde{\chi}^0_1 + Z\tilde{\chi}^0_1; \\
 \text{Z' SUSY:} & \quad Z' \rightarrow \ell^+ + \ell^- \rightarrow \ell^-\tilde{\chi}^0_1 + \ell^+\tilde{\chi}^0_1; \\
 \text{UED:} & \quad Z^{(2)} \rightarrow L^{(1)} + L^{(1)} \rightarrow \ell^+\gamma^{(1)} + \ell^-\gamma^{(1)}; \\
 \text{LHT:} & \quad H \rightarrow t_+ + \bar{t}_- \rightarrow tA_H + \bar{t}A_H. \\
 \text{ILC:} & \quad e^+e^- \rightarrow B_1 + \bar{B}_2 \rightarrow a_1X_1 + a_2X_2.
 \end{align*}
 \]

- Other channels with cusps:

 \[\dagger \text{ Decay chain kinematics: cusps as well.} \]
 \[\dagger \text{ Multi-particle final states: some dilution.} \]

\[\dagger \text{TH, I.-W. Kim and J. Song, in progress.} \]
\[\dagger \text{A. Agashe, M. Toharia et al.; P. Osland, Miller et al.} \]
Determining the missing particle mass of fundamental importance.

 e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.
Summary

- Determining the missing particle mass of fundamental importance.

 e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.

- The LHC may well be the discovery machine for new physics via large(r) E_T, difficult for the mass determination:
 key information for studying cosmic relic dark matter.
• Determining the missing particle mass of fundamental importance.

 e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.

• The LHC may well be the discovery machine for new physics via large(r) E_T, difficult for the mass determination:
 key information for studying cosmic relic dark matter.

• We proposed to search for new processes “antler decays”,
 with distinctive features: kinematical “cusps”,
 that may simultaneously determine both masses:
 knowing m_D, measuring m_B, m_X.
Summary

- Determining the missing particle mass of fundamental importance.

 e.g.: Ever since the neutrino was proposed and observed, its mass measurement is still actively pursued.

- The LHC may well be the discovery machine for new physics via large(r) \mathcal{E}_T, difficult for the mass determination: key information for studying cosmic relic dark matter.

- We proposed to search for new processes "antler decays", with distinctive features: kinematical "cusps", that may simultaneously determine both masses: knowing m_D, measuring m_B, m_X.

We are all eagerly waiting for the excitement from the LHC!