c = 12 Moonshine

Sarah M. Harrison

Harvard University

May 5, 2015

Based on: arXiv:1406.5502 w. Cheng, Dong, Duncan, Kachru, Wrase;
What is moonshine?

Connection between 2 mathematical objects:

- Finite groups
- Modular forms

What are these things and why do we care about them in physics?
First I’ll introduce the basic objects and their context in physics...
Finite groups

- Describe discrete symmetries of physical objects

Monster, $|M| \approx 10^{53}$
Largest Mathieu group, $|M_{24}| \approx 10^{8}$

Conway, $|Co_1| \approx 10^{18}$

Largest Mathieu group, $|M_{24}| \approx 10^{8}$
Finite groups

- Describe discrete symmetries of physical objects
- Classified in the last century (finite simple groups)

Monster, $|M| \sim 10^{53}$
Largest Mathieu group, $|M_{24}| \sim 10^8$
Conway, $|Co_1| \sim 10^{18}$

Largest Mathieu group, $|M_{24}| \sim 10^8$
Finite groups

- Describe discrete symmetries of physical objects
- Classified in the last century (finite simple groups)
- 18 infinite families + 26 sporadic groups

Monster, $|M| \sim 10^{53}$

Largest Mathieu group, $|M_{24}| \sim 10^8$

Conway, $|Co_{1}| \sim 10^{18}$

Largest Mathieu group, $|M_{24}| \sim 10^8$
What is moonshine?

Outline
- Monstrous moonshine
- Conway moonshine
- Conclusions

Modular forms

- General form:
 \[f \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k f(\tau) \]
 for \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \)
 and \(\tau \in \mathbb{H} \).

- \(k \) is called the weight

- \(f(q) = \sum c_n q^n, \quad q = e^{2\pi i \tau} \)

Upper half plane, \(\mathbb{H} \).
Appearance in string theory

- In string theory we consider 2d sigma models, maps from worldsheet to target manifold
Appearance in string theory

- In string theory we consider 2d sigma models, maps from worldsheet to target manifold.
- For compact target manifold, discrete string spectrum \rightarrow discrete symmetry groups.
Appearance in string theory

- In string theory we consider 2d sigma models, maps from worldsheet to target manifold.
- For compact target manifold, discrete string spectrum \rightarrow discrete symmetry groups.
- For one-loop partition function, worldsheet is torus \rightarrow any trace function should be invariant under $SL(2, \mathbb{Z})$.
Elliptic genus and Jacobi forms

For supersymmetric string theories, we can consider the elliptic genus:

\[Z_{\mathcal{T}}(\tau, z) = \text{tr}_{H_{\mathcal{T}, RR}} \left((-1)^{F_R + F_L} y^{J_0} q^{H_L} q^{H_R} \right) \]

Like a partition function, but only counts BPS states weighted by energy and U(1) charge

Topological

Compact manifold \iff Modular, holomorphic function

Table 1: Coxeter numbers, exponents, and Frame shapes

<table>
<thead>
<tr>
<th>Frame shape</th>
<th>Coxeter number</th>
<th>Exponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>$-2, -1, 0$</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>$-3, -1, 1$</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>$-3, 1, 3$</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>$-4, -2, -1, 1$</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>$-5, -3, -1, 1, 2$</td>
</tr>
</tbody>
</table>

What is moonshine?

Outline
Monstrous moonshine
Conway moonshine
Conclusions

Sarah M. Harrison c = 12 Moonshine
Mock modular forms

\[\hat{h}(\tau) = h(\tau) + (4i)^{w-1} \int_{-\bar{\tau}}^{\infty} (z + \tau)^{-w} f(-\bar{z}) \, dz \]

Modular form (non-holomorphic) \hspace{1cm} Mock modular form (holomorphic)

Shadow

These functions tend to appear in physics considering manifolds which are non-compact, and in characters of superalgebras.
What is moonshine?

A relationship between characters of certain finite groups and coefficients of modular forms

Finite groups \(\xrightarrow{\text{MOONSHINE}}\) Modular forms
Why is this interesting?

- Besides the fact that symmetries are vital to our understanding of physical systems, modular forms appear in all corners of string theory and physics in general (black holes, AdS_3 gravity, CFT, string dualities/topological strings, chiral algebras, theories with electric-magnetic duality...)

- This subject unites many fascinating areas of mathematics including group theory, number theory, algebra, and geometry
Monstrous moonshine

Conway moonshine

Conclusions
The j-function

- The j-function is the unique weight zero modular function with only a pole at $\tau = i\infty$, up to constant and normalization.
- It has the expansion
 \[
 j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \ldots
 \]
- Famous observation of McKay:
 \[
 196884 = 1 + 196883
 \]
The \(j \)-function

\[
j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \ldots
\]

\(196884 = 1 + 196883 \)

Dimension of smallest irreducible rep of monster group!!

Thompson:

\[
21493760 = 1 + 196883 + 21296876
\]

\[
864299970 = 2 \times 1 + 2 \times 196883 + 21296876 + 842609326
\]

Also monster irreps!
Monstrous moonshine

What does this mean?
Frenkel-Lepowsky-Meurman:

\[V = V_{-1} \oplus V_1 \oplus V_2 \oplus V_3 \oplus \ldots \]

\[V_{-1} = \rho_0, \quad V_1 = \rho_1 \oplus \rho_0, \quad V_2 = \rho_2 \oplus \rho_1 \oplus \rho_0, \ldots \]

\[j(\tau) - 744 = \dim(V_{-1}) q^{-1} + \sum_{i=1}^{\infty} \dim(V_i) q^i \]

Construction: orbifold (gets rid of 744) of bosonic strings on 24-dimensional Leech lattice

optimal way to pack 24-dimensional spheres
McKay-Thompson series

How do we know the symmetry group is there?

- j-function is a partition function of a CFT

\[Z(\tau) = \text{Tr}(q^{L_0}) = j(\tau) \] counts total number of states at each energy level

- we can “twine” by elements of symmetry group and get many more interesting modular functions

\[Z[g](\tau) = \text{Tr}(g q^{L_0}) = T[g](\tau) \]

operator acting on states

these functions have nice modular properties under group which preserves g-twisted boundary conditions
Monstrous moonshine

One of the defining characteristics of monstrous moonshine is the Genus Zero property:
If \mathbb{H}/Γ for $\Gamma \in SL(2, \mathbb{R})$ is genus zero, then there exists a unique Γ-invariant holomorphic function satisfying $T_\Gamma(\tau) = q^{-1} + O(q)$ as $\tau \to i\infty$

These are called “principal moduli”, and these functions are precisely the McKay-Thompson series of the FLM module; however, the genus zero property has picked them out without any knowledge of the module.
Monstrous moonshine

Summary:
- Partition function of strings on (orbifolded) Leech lattice
- Modular j-function
- Monster symmetry group
Monstrous moonshine + physics

- Bosonic string compactified on Leech lattice is interesting curiosity...
Monstrous moonshine + physics

- Bosonic string compactified on Leech lattice is interesting curiosity...
- This is a $c = 24$ 2d Conformal Field Theory
Monstrous moonshine + physics

- Bosonic string compactified on Leech lattice is interesting curiosity...
- This is a $c = 24$ 2d Conformal Field Theory
- It is also conjectured to be dual to pure quantum gravity in 3d Anti-de Sitter space (Witten) with action

$$S = \frac{1}{16\pi G} \int d^3x \sqrt{-g} (R - 2\Lambda)$$

where $\Lambda = -1/256G^2$ and AdS radius $\ell^2 = -1/\Lambda$
Monstrous moonshine + physics

- Bosonic string compactified on Leech lattice is interesting curiosity...
- This is a \(c = 24 \) 2d Conformal Field Theory
- It is also conjectured to be dual to pure quantum gravity in 3d Anti-de Sitter space (Witten) with action

\[
S = \frac{1}{16\pi G} \int d^3x \sqrt{-g} (R - 2\Lambda)
\]

where \(\Lambda = -1/256G^2 \) and AdS radius \(\ell^2 = -1/\Lambda \)

- This is the most negative possible value of the c.c.
Monstrous moonshine + physics

Why?

- What are the states of a theory of pure gravity in AdS_3?
Monstrous moonshine + physics

Why?

- What are the states of a theory of pure gravity in AdS_3?
- no matter, no gravity waves, but there is the vacuum
Monstrous moonshine + physics

Why?

- What are the states of a theory of pure gravity in AdS_3?
- no matter, no gravity waves, but there is the vacuum
- It contributes

$$Z_{\text{vac}} = q^{-c/24} \prod_{n=2}^{\infty} \frac{1}{(1-q^n)}$$

to the partition function, corresponding to the identity operator and its Virasoro descendants in the dual CFT
Monstrous moonshine + physics

Why?

- What are the states of a theory of pure gravity in \textit{AdS}_3?
- no matter, no gravity waves, but there is the vacuum
- It contributes

\[
Z_{\text{vac}} = q^{-c/24} \prod_{n=2}^{\infty} \frac{1}{(1 - q^n)}
\]

to the partition function, corresponding to the identity operator and its Virasoro descendants in the dual CFT
- This is not modular...
Monstrous moonshine + physics

Why?

- There are also black holes states, corresponding to BTZ black holes with positive temperature
Monstrous moonshine + physics

Why?

- There are also black holes states, corresponding to BTZ black holes with positive temperature
- $L_0 \geq 1$
Monstrous moonshine + physics

Why?

- There are also black holes states, corresponding to BTZ black holes with positive temperature
- $L_0 \geq 1$
- Thus we expect the full partition function to take the form

$$Z = Z_{vac} + O(q)$$

and be modular; this fixes the function
Monstrous moonshine + physics

Why?

- There are also black holes states, corresponding to BTZ black holes with positive temperature
- \(L_0 \geq 1 \)
- Thus we expect the full partition function to take the form

\[
Z = Z_{\text{vac}} + O(q)
\]

and be modular; this fixes the function

- CFTs for which this hold with \(c = 24k \) are known as "extremal"
Monstrous moonshine + physics

Why?

- There are also black holes states, corresponding to BTZ black holes with positive temperature
- $L_0 \geq 1$
- Thus we expect the full partition function to take the form

$$Z = Z_{\text{vac}} + O(q)$$

and be modular; this fixes the function

- CFTs for which this hold with $c = 24k$ are known as “extremal”
- For $c = 24$, this is simply $j(\tau) - 744 = \frac{1}{q} + 196884q + \ldots$
Monstrous moonshine + physics

Assumptions, problems and open questions

- Holomorphic factorization for $c = 24k$, not proven; Chiral gravity?
Monstrous moonshine + physics

Assumptions, problems and open questions

- Holomorphic factorization for $c = 24k$, not proven; Chiral gravity?
- Extremal CFTs are not known for $k > 1$, and in many cases their symmetry groups cannot be this large (Gaiotto)
Monstrous moonshine + physics

Assumptions, problems and open questions

- Holomorphic factorization for $c = 24k$, not proven; Chiral gravity?
- Extremal CFTs are not known for $k > 1$, and in many cases their symmetry groups cannot be this large (Gaiotto)
- There are subtleties about which geometries contribute to the CFT partition function—which saddles should one include? (Maloney-Witten)
Mathieu moonshine

Eguchi-Ooguri-Tachikawa, K3 elliptic genus:

\[
Z(\tau, z) = \frac{\theta_2^2(\tau, z)}{\eta^3(\tau)} \left(a \mu(\tau, z) + q^{-1/8} \left(b + \sum_{n=1}^{\infty} t_n q^n \right) \right)
\]

24 massless multiplets
expand this function in N=4 superconformal characters

\[2 \times 45, 2 \times 231, 2 \times 770, 2 \times 2277, 2 \times 5796, \ldots\]

(Sums of) dimensions of irreducible representations of the largest Mathieu group M24!

Infinite tower of massive multiplets
Mathieu moonshine

- Representations are governed by a mock modular form
- No explicit construction of a theory (CFT or otherwise) with M_{24} symmetry which naturally yields this mock modular form
Conway moonshine

- Original proposal by FLM: a $c = 12$ SCFT composed of 8 bosons on the E_8 root lattice and their Fermi superpartners
- Another description by Duncan in terms of 24 free chiral fermions with a \mathbb{Z}_2 orbifold
- Choosing an $\mathcal{N} = 1$ supercharge breaks $Spin(24)$ to Co_0, group of automorphisms of the Leech lattice

Partition function takes the form

$$\frac{1}{\sqrt{q}} + 276\sqrt{q} + 2048q + 11202q^{3/2} + \ldots$$
Conway moonshine

The twined partition functions in this model

\[Z_g = \text{Tr}_g q^{L_0 - c/24} \]

under element in the Conway group are normalized principal moduli for genus zero groups.
Conway moonshine

Why study this model? Some reasons

- As in the case of the monster CFT, this $c = 12$ CFT is conjectured to be dual to pure sugra in AdS_3 (Witten)
Why study this model? Some reasons

- As in the case of the monster CFT, this $c = 12$ CFT is conjectured to be dual to pure sugra in AdS_3 (Witten)
- As in the case of $K3$ sigma models ($c = 6$), interesting and suggestive properties were observed in elliptic genera of complex 4-manifolds which correspond to $c = 12$ worldsheet CFTs
Conway moonshine

Why study this model? Some reasons

▷ As in the case of the monster CFT, this $c = 12$ CFT is conjectured to be dual to pure sugra in AdS_3 (Witten)

▷ As in the case of $K3$ sigma models ($c = 6$), interesting and suggestive properties were observed in elliptic genera of complex 4-manifolds which correspond to $c = 12$ worldsheet CFTs

▷ This is a precise toy model for understanding such symmetries which may arise in superstring compactifications
Holonomy and superstring compactification

- In string theory there is a relation between special holonomy groups of compactification manifolds and spacetime SUSY.
Holonomy and superstring compactification

- In string theory there is a relation between special holonomy groups of compactification manifolds and spacetime SUSY.
- For superstring models the list is:
 - $SU(n)$, Calabi Yau
 - $Sp(n)$, HyperKaehler
 - G2
 - Spin(7)
In string theory there is a relation between special holonomy groups of compactification manifolds and spacetime SUSY.

For superstring models the list is:
- $SU(n)$, Calabi Yau
- $Sp(n)$, HyperKaehler
- G2
- Spin(7)

For superstrings these yield enhanced worldsheet SUSY:
- $SU(n)$, Calabi Yau $\iff \mathcal{N} = (2,2)$
- $Sp(n)$, HyperKaehler $\iff \mathcal{N} = (4,4)$
- G2 $\iff \mathcal{N} = (1,1) + \text{tricritical Ising}$
- Spin(7) $\iff \mathcal{N} = (1,1) + \text{Ising}$
Holonomy and superstring compactification

- For $c = 12$, we can have Calabi-Yau, HyperKaehler, and Spin(7) manifolds.
- The elliptic genus of these theories exhibit intriguing properties, similar to that of the $K3$ surface, but a connection with moonshine is difficult to make precise for a general manifold since the elliptic genus depends on some moduli.
- However, the chiral CFT described is an arena in which we can make very similar connections very precise.
Conway moonshine

How to construct enhanced SUSY algebras in our chiral CFT?

- The key is to first construct an R-current using some number of the free fermions
Conway moonshine

How to construct enhanced SUSY algebras in our chiral CFT?

- The key is to first construct an R-current using some number of the free fermions
- Example: $\mathcal{N} = 4$ Choose three of the fermions to generate an $SU(2)$:

$$J_i = -i\epsilon_{ijk}\lambda_j\lambda_k, i, j, k \in \{1, 2, 3\}.$$ (1)
Conway moonshine

How to construct enhanced SUSY algebras in our chiral CFT?

- The key is to first construct an R-current using some number of the free fermions
- Example: $\mathcal{N} = 4$ Choose three of the fermions to generate an $SU(2)$:
 \[J_i = -i\epsilon_{ijk}\lambda_j\lambda_k, \quad i, j, k \in \{1, 2, 3\}. \] \[(1) \]
- Check they form an affine $SU(2)$ algebra with level 2 through the OPE:
 \[J_i(z)J_j(0) \sim \frac{1}{z^2}\delta_{ij} + \frac{i}{z}\epsilon_{ijk}J_k(0). \] \[(2) \]
How to construct enhanced SUSY algebras in our chiral CFT?

- Fill out the rest of the $\mathcal{N} = 4$ algebra by computing OPE with $\mathcal{N} = 1$ generators
Conway moonshine

How to construct enhanced SUSY algebras in our chiral CFT?

- Fill out the rest of the $\mathcal{N} = 4$ algebra by computing OPE with $\mathcal{N} = 1$ generators

- This yields a full copy of the $\mathcal{N} = 4$ SCA
How to construct enhanced SUSY algebras in our chiral CFT?

- Fill out the rest of the $\mathcal{N} = 4$ algebra by computing OPE with $\mathcal{N} = 1$ generators
- This yields a full copy of the $\mathcal{N} = 4$ SCA
- Can similarly construct a $\mathcal{N} = 2$ SCA by choosing 2 fermions to generate the $U(1)$ R-current
- Can similarly construct a $SW(3/2, 2)$ SCA ($\text{Spin}(7)$) by choosing 1 fermion to generate the Ising R-current
Global symmetries

Once we construct the extended superalgebras, the model no longer has a Co_0 global symmetry group. What symmetry group is preserved by each algebra?

- A choice of n fermion(s) breaks Co_0 to a subgroup which preserves an n-plane in the Leech lattice:

<table>
<thead>
<tr>
<th>Superalgebra</th>
<th>Geometrical Representation</th>
<th>Global symmetry group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{N} = 0$</td>
<td>\mathbb{R}^{24}</td>
<td>$Spin(24)$</td>
</tr>
<tr>
<td>$\mathcal{N} = 1$</td>
<td>Λ_{Leech}</td>
<td>Co_0</td>
</tr>
<tr>
<td>Spin(7)</td>
<td>Λ_{Leech}, fixed 1-plane</td>
<td>M_{24}</td>
</tr>
<tr>
<td>$\mathcal{N} = 2$</td>
<td>Λ_{Leech}, fixed 2-plane</td>
<td>M_{23}</td>
</tr>
<tr>
<td>$\mathcal{N} = 4$</td>
<td>Λ_{Leech}, fixed 3-plane</td>
<td>M_{22}</td>
</tr>
</tbody>
</table>
Global symmetries

We can see this explicitly by looking at the decomposition of the graded partition function in terms of characters of these SCAs: For example, computing

$$Z(\tau, z) = \text{Tr}(-1)^F q^{L_0 - c/24} y^{J_0}$$

and decomposing into $\mathcal{N} = 4$ characters, we get:

$$Z(\tau, z) = 21 \text{ch}_{3; \frac{1}{2}, 1}^{\mathcal{N}=4} + \text{ch}_{3; \frac{1}{2}, 0}^{\mathcal{N}=4}$$

$$+ (560 \text{ch}_{3; \frac{3}{2}, \frac{1}{2}}^{\mathcal{N}=4} + 8470 \text{ch}_{3; \frac{5}{2}, \frac{1}{2}}^{\mathcal{N}=4} + 70576 \text{ch}_{3; \frac{7}{2}, \frac{1}{2}}^{\mathcal{N}=4} + \ldots)$$

$$+ (210 \text{ch}_{3; \frac{3}{2}, 1}^{\mathcal{N}=4} + 4444 \text{ch}_{3; \frac{5}{2}, 1}^{\mathcal{N}=4} + 42560 \text{ch}_{3; \frac{7}{2}, 1}^{\mathcal{N}=4} + \ldots)$$
Global symmetries

These are M_{22} representations: $21, 210, 560 = 280 + \overline{280}$,

$$Z(\tau, z) = 21 \text{ch}_{3;\frac{1}{2},0}^{N=4} + \text{ch}_{3;\frac{1}{2},1}^{N=4}$$

$$+ (560 \text{ch}_{3;\frac{3}{2},\frac{1}{2}}^{N=4} + 8470 \text{ch}_{3;\frac{5}{2},\frac{1}{2}}^{N=4} + 70576 \text{ch}_{3;\frac{7}{2},\frac{1}{2}}^{N=4} + \ldots)$$

$$+ (210 \text{ch}_{3;\frac{3}{2},1}^{N=4} + 4444 \text{ch}_{3;\frac{5}{2},1}^{N=4} + 42560 \text{ch}_{3;\frac{7}{2},1}^{N=4} + \ldots)$$

$$= (\psi_{1,1}(\tau, z))^{-1} \left(24 \mu_{3;0}(\tau, z) + \sum_{r \in \mathbb{Z}/6\mathbb{Z}} h_r(\tau) \theta_3,r(\tau, z) \right)$$

and they are encoded in a mock modular form.
Global symmetries

The same holds for $\mathcal{N} = 2$ and M_{23} representations: 23, 231, 770, ...

$$Z(\tau, z) = 23 \, \text{ch}_{\frac{3}{2}, \frac{1}{2}, 0}^{\mathcal{N}=2} + \text{ch}_{\frac{3}{2}, \frac{1}{2}, 2}^{\mathcal{N}=2} + (770 \, (\text{ch}_{\frac{3}{2}, \frac{3}{2}, 1}^{\mathcal{N}=2} + \text{ch}_{\frac{3}{2}, \frac{3}{2}, -1}^{\mathcal{N}=2})$$

$$+ 13915 \, (\text{ch}_{\frac{3}{2}, \frac{5}{2}, 1}^{\mathcal{N}=2} + \text{ch}_{\frac{3}{2}, \frac{5}{2}, -1}^{\mathcal{N}=2}) + \ldots$$

$$+ (231 \, \text{ch}_{\frac{3}{2}, \frac{3}{2}, 2}^{\mathcal{N}=2} + 5796 \, \text{ch}_{\frac{3}{2}, \frac{5}{2}, 2}^{\mathcal{N}=2} + \ldots)$$

$$= \psi_{1, -\frac{1}{2}}^{-1} \left(24 \, \tilde{\mu}_{\frac{3}{2}, 0} \right)$$

$$+ (\! - \! q^{-\frac{1}{24}} + 770 \, q^{23} + 13915 \, q^{47} \! + \ldots \!) (\theta_{\frac{3}{2}, \frac{1}{2}} + \theta_{\frac{3}{2}, -\frac{1}{2}})$$

$$+ (q^{-\frac{3}{8}} + 231 \, q^{\frac{5}{8}} + 57962q^{\frac{13}{8}} + \ldots) \theta_{\frac{3}{2}, \frac{3}{2}} \right)$$

(3)
Global symmetries

...And for Spin(7) and M_{24} representations: 23, 253, 1771, . . .

$$Z_{NS} = \tilde{\chi}_0^{NS} + 23\tilde{\chi}_{1/2}^{NS} + (253\chi_{0,1}^{NS} + 7359\chi_{0,2}^{NS} + \ldots) + (1771\chi_{1/16,3}^{NS} + \ldots)$$

$$= P(24\mu^{NS} + q^{-1/120}(-1 + 1771q + \ldots)\Theta_{1/16}^{NS})$$

$$+ q^{-49/120}(1 + 253q + \ldots)\Theta_0^{NS}$$
The groups mentioned are not the only subgroups of Co_0 which preserve n-planes in the Leech lattice.

However the Mathieu groups are singled out due to the following moonshine property, analogous to the genus zero property:

1. $Z_g(\tau, z) = c_g + y^2 + y^{-2}$ as $\tau \to i\infty$, and
2. $Z_g|\gamma(\tau, z) = c_g,\gamma$ as $\tau \to i\infty$ whenever $\gamma \in SL_2(\mathbb{Z})$ and $\gamma\infty \notin \Gamma_g\infty$.
Conclusions

- In this free fermion chiral CFT, we have constructed the first explicit moonshine modules for mock modular forms.
In this free fermion chiral CFT, we have constructed the first explicit moonshine modules for mock modular forms.

The geometry of n-planes in the Leech lattice governs the global symmetry groups which are preserved by various superalgebras.
Conclusions

- In this free fermion chiral CFT, we have constructed the first explicit moonshine modules for mock modular forms.
- The geometry of n-planes in the Leech lattice governs the global symmetry groups which are preserved by various superalgebras.
- It would be interesting to understand precisely to what extent this module governs symmetries which appear in string compactifications with extended worldsheet supersymmetry.
Conclusions

- In this free fermion chiral CFT, we have constructed the first explicit moonshine modules for mock modular forms.
- The geometry of n-planes in the Leech lattice governs the global symmetry groups which are preserved by various superalgebras.
- It would be interesting to understand precisely to what extent this module governs symmetries which appear in string compactifications with extended worldsheet supersymmetry.
- ...As well as the relation to gravity and the structure of extremal SCFTs with higher central charge.
Conclusions

What physics can we hope to learn about?

- Conformal field theories on K3 surfaces and more general Calabi-Yau manifolds
- Supersymmetric black hole entropy, wall-crossing, and topological strings
- AdS_3 quantum gravity
- BPS states and chiral algebras in supersymmetric field theories
- D-branes and their bound states
- Invariants in geometry and topology coming from SCFT/SQFT (Donaldson, Gromov-Witten, Gopakumar-Vafa, Donaldson-Thomas...)