1. **Schedule:**

 Mon/Tue/Wed 10-10:50 am, Bloomberg 361
 Instructor: Prof. Andrei Gritsan, email gritsan@jhu.edu
 Office: Bloomberg 433
 http://www.pha.jhu.edu/~gritsan/2007.171.408/

2. **Reference material:**

 Author: Perkins, Donald H.
 Supporting: "Review of Particle Properties"
 by Particle Data Group, online http://pdg.lbl.gov/ and handouts
 Supporting: "Introduction to Elementary Particles"
 Author: David Griffiths
 Published: Wiley, 1987

3. **Grade policy:**

 25% Homework assignments
 25% In-class paper presentation
 20% Midterm
 30% Final exam

4. **Homework assignments** are six biweekly sets of problems which cover the topics discussed during the two weeks in class:

 HW1 due Tue Feb.6 (Introductory material, selected topics in Chapters 1, 2)
 HW2 due Tue Feb.20 (Experimental methods, selected topics in Chapter 11)
 HW3 due Tue Mar.6 (Experimental methods and Symmetries, Chapters 11, 3)
 HW4 due Tue Mar.27 (Symmetries, Hadrons, selected topics in Chapters 3, 4, 7)
 HW5 due Tue Apr.10 (QCD and EW Interactions, selected topics in Chapters 5, 6, 7)
 HW6 due Tue Apr.24 (EW Interactions, selected topics in Chapters 7, 8, 9)

5. **In-class presentation** will cover one of the published research papers in experimental particle physics (high energy physics). The list of papers will be provided by the instructor. Students can also suggest papers of their choice. Presentations will take place on Mondays in the last month of classes. Each presentation will be 20 minutes with typically two people presenting in each class. Overhead slide projector or computer projector could be used for your presentation. In addition, a one-page outline of the presentation is due the last day of classes before the Spring break. The relevant dates are the following:

 Wed Feb.21 – deadline to select a paper
 Wed Mar.7 – one-page outline of the presentation
 Mon Apr.2, Apr.9, Apr.16 (and may be Apr.23) – choice days for the paper presentations
6. **Two exams** will cover the material covered in class and homework assignments:

 Wed Mar.7 – MIDTERM EXAM, Bloomberg 361, 10:00am-10:50am
 (cover first seven weeks of classes and HW1-3)

 Fri May 4 – FINAL EXAM, Bloomberg 361, 9:00am-12:00(noon)
 (cover all material)

7. **General information:**

 The course is suitable for advanced physics undergraduates and beginning graduate students interested in experimental high energy physics. Some basic knowledge of non-relativistic Quantum Mechanics, Theory of Relativity, and relevant mathematical techniques is required. However, the material will be presented in a phenomenological and empirical way with the emphasis on experimental aspects of the field. Other more advanced courses on particle physics are recommended for deeper studies of theoretical formalism.

 The textbook "Introduction to High Energy Physics" by Donald Perkins will serve as the main guide throughout the course. Do not expect mathematical rigor from this book. However, this is a great introductory material which will serve as the main guide throughout the course. It combines all recent developments in particle physics with the balance between experiment and theory.

 We will also use the summary of elementary particle properties as the most up-to-date and detailed reference material. The optional textbook "Introduction to Elementary Particles" by David Griffiths is a great mathematically rigorous introduction at appropriate level. However, most experimental aspects of the field are not covered and there have been certain developments in the field in the past 20 years. The instructor will use some chapters of this book to complement the main textbook.

 First we will go through the introduction to elementary particles and their interaction (corresponding to Chapters 1, 2 of the textbook). Then we will discuss the experimental aspects of the field (Chapter 11), which should tell us why we would believe in elementary particles and everything that we learn about them. By this time you should have a general overview of the experimental methods in particle physics and be able to select a paper for in-class presentation. We will continue with selected topics on the symmetries (Chapter 3), hadrons and QCD (Chapters 4, 5, 6), and electroweak interactions (Chapters 7, 8, 9). Homework assignment should follow closely our progress in class.

 The instructor will keep the on-line summary of the course up-to-date, including the links to the papers for in-class presentations (both links are identical):

 http://www.pha.jhu.edu/~gritsan/2007.171.408/