Lecture 19: Statistics & data analysis
(Recipes, Chapters 14 and 15)

- Two types of problem

Probability theory is a rigorous branch of mathematics

- allows us to calculate the probability of observing t if θ is true: $P(t | \theta)$

Statistics is a much less rigorous branch of mathematics and deals to a large extent with the inverse problem: given a measured value of t, what can we say about θ?

see also, Statistics: a Guide to the Use of Statistical Methods in the Physical Sciences, by Roger J. Barlow (Wiley)
Example of a result in probability theory: if the average number of radioactive decays occurring during some time interval is μ, the probability of observing n such events is $P(n \mid \mu) = \mu^n e^{-\mu}/n!$

Important notes:

μ is a continuous parameter (can take any non-negative real value)

n is an observable (random variable) and is an integer

P is not symmetric under interchange of n and μ (except in the limit of large n and μ)
Classical versus Bayesian statistics

• In statistics, there are two approaches to answering “given a measured value of \(t \), call it \(t_m \), what can we say about \(\theta \)?”

• Classical statistics approach:
 – There is a fixed, unknown value of \(\theta \), and all we can do is to quote values of \(\theta \), call them \(\theta_1 \) and \(\theta_2 \), for which we know the probabilities of finding \(t \leq t_m \) and \(t \geq t_m \) in many repeated experiments: \(\theta_1 < \theta < \theta_2 \) is called the confidence interval
Classical versus Bayesian statistics

- In statistics, there are two approaches to answering “given a measured value of t, call it t_m, what can we say about θ?”
- Bayesian statistics approach:
 - θ is a random variable that can be described by a probability distribution. Our experimental results and some ASSUMPTIONS allow us to describe the distribution
Classical versus Bayesian statistics

Bayesian and classical statistics meet in 2 places
1) **Systems described by a Gaussian probability distribution**

\[
P(t \mid \theta) = \frac{\exp\left(-\frac{(t-\theta)^2}{2\sigma^2}\right)}{(2\pi)^{1/2}\sigma} = P(\theta \mid t)
\]

i.e. \(P\) is symmetric in \(t\) and \(\theta\)

\(\Rightarrow\) Classicists integrate over \(t\)
Bayesians integrate over \(\theta\)
Classical versus Bayesian statistics

Bayesian and classical statistics meet in 2 places

2) **Properly constructed 1-D problems**

Measurements define confidence intervals which can be determined by the Neyman construction

Make many vertical lines and mark points \(t_1 \) and \(t_2 \) such that

\[
P(t > t_2 \mid \theta) = \alpha \\
P(t < t_1 \mid \theta) = \alpha
\]
Confidential intervals for 1-D problems

- Neyman construction: \[\int_{-\infty}^{t_2} P(t \mid \theta) dt = \int_{t_1}^{\infty} P(t \mid \theta) dt = \alpha \]
Confidential intervals for 1-D problems

• This construction defines a central confidence interval of probability content
 \(\beta = 1 - 2\alpha \)

• A common convention is to choose
 \(\beta = 0.683 (\pm 1\sigma \text{ for a Gaussian}) \)
Confidential intervals for 1-D problems

• The center of the confidence interval is not uniquely defined: common choices are

a) A symmetrized interval, \(\theta = \bar{\theta} \pm \Delta \theta \), where
\[
\bar{\theta} = (\theta_1 + \theta_2) / 2 \quad \text{and} \quad \Delta \theta = |\theta_1 - \theta_2| / 2
\]

b) Use the 50% value defined by
\[
\int_{t_{50}}^{\infty} P(t \mid \theta) dt = \int_{-\infty}^{t_{50}} P(t \mid \theta) dt = 0.5
\]

to write \(\theta = \theta_{50 - (\theta_{50} - \theta_1)} + (\theta_2 - \theta_{50}) \)
Bayesian statistics

- The Neyman construction is also something that a Bayesian can love:

Bayesian statistics starts with

\[P(A \cap B) = P(A|B) P(B) = P(B|A) P(A) \]
(Bayes’ theorem)

In our language, we can write this

\[P(t|\theta)dt \cdot P(\theta) d\theta = P(\theta|t) d\theta \cdot P(t) dt \]
Bayesian statistics

• Our definition of t_1 and t_2 implies

$$\int_{t_1}^{t_2} P(t \mid \theta) dt = 1 - 2\alpha = \beta$$

• Multiply by $P(\theta)$ and integrate $d\theta$ to obtain

$$\int_{-\infty}^{\infty} d\theta P(\theta) \int_{t_1}^{t_2} dt P(t \mid \theta) = \beta \int_{-\infty}^{\infty} P(\theta) d\theta$$

$$\Rightarrow \int_{-\infty}^{\infty} d\theta \int_{t_1(\theta)}^{t_2(\theta)} dt P(t \mid \theta) P(\theta) = \beta$$
Bayesian statistics

• Apply Bayes’ Theorem, and interchange order of integration:

\[\int_{-\infty}^{\infty} \int_{\theta_1(t)}^{\theta_2(t)} dtP(t) P\thetaP(\theta \mid t) = \beta \]

• Suppose we measure the value \(t = t_m \)
Then \(P(t) = \delta (t - t_m) \), and we can write

\[\int_{\theta_1(t_m)}^{\theta_2(t_m)} \frac{P(\theta \mid t_m)}{d \theta = \beta} / \theta_1(t_m) / \theta_2(t_m) \]
Bayesian statistics

• This equation

\[\int_{\theta_1(t_m)}^{\theta_2(t_m)} P(\theta | t_m) d\theta = \beta \]

says that given the measurement, \(t = t_m \), the random variable \(\theta \) has a probability \(\beta \) of lying between \(\theta_1(t_m) \) and \(\theta_2(t_m) \).

Holds for integrated confidence intervals in 1-D
Summary

• By understanding our experiment, we know $P(t|\theta) \, dt$
• We would like to know $P(\theta|t_m) \, d\theta$ for a given measurement $t=t_m$
• We can compute

\[
\int_{\theta_1(t_m)}^{\theta_2(t_m)} P(\theta | t_m) \, d\theta = \beta
\]
“Bad” Bayesian statistics

• Classic fallacy is to assume that
 \[P(\theta|t) = P(t|\theta) \ P(\theta) / P(t) = P(t|\theta) \]

Example: we observe \(n \) radioactive decays within a given time period \(\Delta t \) and assume
\[P(\mu|n) = P(n|\mu) = n^\mu \ e^{-n}/\mu! \]
to obtain confidence limits on the decay rate \(\mu/\Delta t \)
Basic definitions

• Our textbook devotes several sections to describing the comparison of measured distribution functions of random variables. The basic definitions are useful:

 • Mean
 \[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

 • Variance, \(Var(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \approx <x^2> - <x>^2 \)

 • Standard deviation, \(\sigma = \text{Var}(x)^{1/2} \)
Basic definitions

• Skew

\[Skew(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^3 / \sigma^3 \]

• Kurtosis

\[Kurt(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^4 / \sigma^4 - 3 \]

• These 3\(^{rd}\) and 4\(^{th}\) moments are conventionally defined to be dimensionless and equal to zero for a Gaussian distribution

The book discusses the comparison of the means and variances of different distributions (Student’s t-test and F test)
Basic definitions

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal (Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

from Recipes
Central limit theorem

• An important property of the variance is that it is additive (like the mean)

• If \(z = x + y \), where \(x \) and \(y \) are random variables drawn independently from different distributions, then

\[
\overline{z} = \overline{x} + \overline{y}
\]

\[
Var(z) = Var(x) + Var(y)
\]

• Hence, if \(X \) is the sum of \(N \) random variables \(x_i \) drawn from a set of arbitrary distributions, \(R_i(x_i) \), then

\[
\overline{X} = \sum_{i=1}^{N} \overline{x_i}
\]

\[
Var(X) = \sum_{i=1}^{N} Var(x_i)
\]
Central limit theorem

• The CLT says that in the limit of large N, the distribution of X is Gaussian:

$$P(X) = \frac{e^{-(X-\bar{X})^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$$

• This justifies many of the Gaussian approximations commonly made in statistics
Central limit theorem

• Example: the mean of a sample \(\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \)

itself tends to be normally distributed with a “standard error”

\[
\delta \bar{x} = \sqrt{\frac{\sigma_x^2}{N}} = \sqrt{\frac{Var(x)}{N}}
\]
Central limit theorem: “proof”

• Consider a variable x_1 that has a probability distribution $P_1(x_1)$, and a variable x_2 that has a probability distribution $P_2(x_2)$

Let $X = x_1 + x_2$
Then $P(X) \, dX = \int P_1(x_1) \, P_2(X - x_1) \, dx_1 \, dX$

$\Rightarrow \, P = P_1 \ast P_2 \Rightarrow \tilde{P} = \tilde{P_1} \tilde{P_2}$
(where tilde denotes a Fourier transform)
Central limit theorem: “proof”

• We know that

\[\widetilde{P}_1(k) = \int e^{ikx_1} P_1(x_1) dx_1 \]

\[= \int P_1(x_1) dx_1 + ik \int xP_1(x_1) dx_1 - \frac{1}{2} k^2 \int x^2 P_1(x_1) dx_1 + \ldots \]

\[= 1 + ik\bar{x}_1 - \frac{1}{2} k^2 \langle x_1^2 \rangle + O(k^3) \]
Central limit theorem: “proof”

• Taking the natural log, and using
 \(\ln (1+y) = y - \frac{1}{2} y^2 + O(y^3) \), we find that
 \[
 \ln \tilde{P}(k) = ik < x_1 > - \frac{1}{2} k^2 < x_1^2 > + \frac{1}{2} k^2 < x_1 >^2 + O(k^3)
 \]
 \[
 = ik\bar{x}_1 - \frac{1}{2} k^2 Var(x_1) + O(k^3)
 \]

• Thus the probability distribution for \(X=x_1 + x_2 \) has
 \[
 \ln \tilde{P}(k) = \ln \tilde{P}_1(k) \tilde{P}_2(k) = \ln \tilde{P}_1(k) + \ln \tilde{P}_2(k)
 \]
 \[
 = ik(\bar{x}_1 + \bar{x}_2) - \frac{1}{2} k^2 \{Var(x_1) + Var(x_2)\} + O(k^3)
 \]
 \[
 = ik\bar{X} - \frac{1}{2} k^2 Var(X) + O(k^3)
 \]
Central limit theorem: “proof”

• This expression is clearly true when X is the sum of any number of random variables

$$\ln \tilde{P}(k) = i k \bar{X} - \frac{1}{2} k^2 \text{Var}(X) + O(k^3)$$

Key point: as we add more and more random variables, the probability distribution gets broader and broader \Rightarrow its Fourier transform is described better and better by the terms of lowest order in k
Central limit theorem: “proof”

- So in the limit of large N, we take

\[
\ln \widetilde{P}(k) = ik\bar{X} - \frac{1}{2} k^2 \text{Var}(X)
\]

\[
\Rightarrow \widetilde{P}(k) = e^{ik\bar{X}} e^{-\frac{1}{2} k^2 \text{Var}(X)}
\]
Central limit theorem: “proof”

• The inverse Fourier transform yields

\[
\tilde{P} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ikx} e^{ik\bar{X}} e^{-\frac{1}{2}k^2\sigma^2} \, dk
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}[k \sigma - i(\bar{X} - x)/\sigma]^2\right) e^{-\frac{1}{2}[(\bar{X} - x)/\sigma]^2} \, dk
\]

\[
= \frac{1}{2\pi} \sqrt{\left(\frac{2\pi}{\sigma^2}\right)} \exp\left(-\frac{1}{2}\left(\frac{\bar{X} - x}{\sigma}\right)^2\right) \sqrt{2\pi\sigma^2}
\]

\[
= \frac{e^{-\frac{1}{2}\left(\frac{\bar{X} - x}{\sigma}\right)^2}}{\sqrt{2\pi\sigma^2}}
\]